Tuesday, December 27, 2011

Progress being made on nanomedicine computers

Tiny Biocomputers Move Closer to Reality: Scientific American scientificamerican.com Researchers in nanomedicine have long dreamed of an age when molecular-scale computing devices could be embedded in our bodies to monitor health and treat diseases before they progress. The advantage of such computers, which would be made of biological materials, would lie in their ability to speak the biochemical language of life. Several research groups have recently reported progress in this field. A team at the California Institute of Technology, writing in the journal Science, made use of DNA nanostructures called seesaw gates to construct logic circuits analogous to those used in microprocessors. Just as silicon-based components use electric current to represent 1’s and 0’s, bio-based circuits use concentrations of DNA molecules in a test tube. When new DNA strands are added to the test tube as “input,” the solution undergoes a cascade of chemical interactions to release different DNA strands as “output.” In theory, the input could be a molecular indicator of a disease, and the output could be an appropriate therapeutic molecule. A common problem in constructing a computer in a test tube is that it is hard to control which interactions among molecules occur. The brilliance of the seesaw gate is that a particular gate responds only to particular input DNA strands. In a subsequent Nature paper, the Caltech researchers showed off the power of their technique by building a DNA-based circuit that could play a simple memory game. A circuit with memory could, if integrated into living cells, recognize and treat complex diseases based on a series of biological clues. This circuitry has not been integrated into living tissue, however, in part because its ability to communicate with cells is limited. Zhen Xie of the Massachusetts Institute of Technology and his collaborators have recently made progress on this front. As they reported in Science, they designed an RNA-based circuit that was simpler but could still distinguish modified cancer cells from noncancerous cells and, more important, trigger the cancer cells to self-destruct. Both techniques have been used only in artificial scenarios. Yet the advances in DNA-based circuits offer a new, powerful platform to potentially realize researchers’ long-held biocomputing dreams. - Posted from my iPad2

Location:Georgetown TX,United States

Canadian researchers believe they are near to developing a vaccine for ovarian cancer

Canadian researchers close in on vaccine for ovarian cancer montrealgazette.com Brad Nelson, a molecular and cellular biologist and project leader of the research at the B.C. Cancer Agency's Deeley Research Centre, said the team believes it is three to five years away from clinical trials of a vaccine. Nelson said this has been made possible by breakthroughs in recent years in DNA sequencing. "It's a whole new approach to cancer vaccines that's never been used before," he said. According to Ovarian Cancer Canada, more than 2,600 Canadian women are diagnosed with the disease every year and it kills 1,750 annually. If it is detected early, survival rates can reach 90 per cent. But no screening tools exist to test for it, and symptoms can be vague and easily missed. Most diagnoses occur when the cancer has reached an advanced stage. Ovarian cancer cells can be shed into surrounding bodily fluid. They can then implant on other structures, including the uterus, bladder or bowel, forming new tumours. He said the course of treatment for ovarian cancer is normally surgery followed by chemotherapy. Patients usually respond well at first, but within two to three years, the cancer often reappears. By that time, the cancer cells often have become resistant to chemotherapy drugs, and survival rates start to drop off. Nelson said his research is geared toward a therapeutic vaccine that would be administered after surgery and chemotherapy have beaten down the cancer cells. The vaccine would work by educating the body's immune system to recognize cancerous cells and attack them. Nelson said the planned vaccine would be personalized by creating a DNA profile of the patient's tumours. With ovarian cancer, cells with mutations begin to arise and together band into tumours. By performing a DNA analysis of the tumour, a more targeted vaccine can be developed. It would alert the immune system of a particular patient to recognize and attack the mutated cells of tumours. Also, if the cancer should reappear, another personalized vaccine can be created. This new version could target cells of the second cancer, which likely would have mutated from the first. "There really is no limit to how long you can play this strategy," Nelson said. Furthermore, because cancer cells tend to mutate into hundreds of DNA sequences, the vaccine would target five of the mutations, giving the patient's immune system a good chance of winning. "The chance a tumour will be able to bypass all five is very low," he said. It's an approach similar to modern drug cocktail treatments for HIV. A variety of drugs are used to beat back the AIDS virus as it mutates into various forms. "Viruses are like tumours â they are dumb," Nelson said. "They aren't really trying to kill you, they just keep on blindly evolving." Researchers in the U.S. are taking a similar approach to developing personalized vaccines for different cancers. But Nelson said the B.C. Cancer Centre in Victoria offers him a unique, "front-line" scientific environment. Nelson bumps shoulders every day with clinical doctors and patients. "You start to think differently," he said. "What can I do in three to five years that is going to make a difference?" Meanwhile, Lorraine Dixon of Saltspring Island, a survivor of ovarian cancer and one of the nearly 100 women who have agreed to donate tissue and blood samples to help out, is glad to hear the work is going well. Dixon reports every year to have blood drawn for research. Since she was diagnosed in 2008, Dixon has had two bouts of surgery, one round of chemotherapy and one round of radiation therapy. The tests show she has responded well. But Dixon said she has a vested interest beyond her own body. She also has a grown daughter, two granddaughters and five nieces. "I agreed (to the research) before my first surgery," she said. Nelson's work has been funded by Genome B.C., an organization supported by government partnering with private industry to act as a catalyst in life-sciences research, including medicine. - Posted from my iPad2

Location:Georgetown TX,United States

Saturday, December 17, 2011

An X-Ray Machine The Size Of An iPhone That Looks Like A Star Trek Tricorder

An X-Ray Machine The Size Of An iPhone That Looks Like A Star Trek Tricorder

BY Neal Ungerleider Thu Dec 8, 2011

California startup Tribogenics is betting that their technology will transform health care--and investors seem to agree.
X-ray machines traditionally use bulky power sources to generate rays. However, California startup Tribogenics is betting that a novel method of powering X-ray machines will revolutionize medical care and airport security. The best part? Tribogenics has already developed prototypes that fit in a pocket.

Tribogenics' products rely on a counterintuitive discovery: X-rays are generated when unrolling Scotch tape in a vacuum. In a Nature article, UCLA researchers Carlos Camara, Juan Escobar, Jonathan Hird, and Seth Putterman detailed how Scotch tape can generate surprisingly large amounts of X-rays thanks to visible radiation generated by static electricity between two contacting surfaces. The research encountered challenges thanks to the fact that Scotch tape and generic brand adhesive tapes generated slightly different energy signatures; the composition of Scotch tape adhesive is a closely guarded 3M trade secret. Camara is Tribogenics' chief scientist; the company is headed by Dale Fox, best known for developing the first screen overlay protectors for mobile phones.

Fox told Fast Company that “every other X-ray source in the world uses a high-voltage transformer connected to a vacuum tube. In contrast, we've harnessed the power of the immense voltages in static electricity to create tiny, low-cost, battery-operated X-ray sources for the first time in history. It's like the jump the electronics industry took when it moved from vacuum tubes to transistors.” According to Fox, Tribogenics has already developed X-ray energy sources the size of a USB memory stick. While Tribogenics representatives declined to discuss pricing for upcoming products, the firm “very comfortably” promised that the cost would be less than 10% than that of any existing X-ray technology.

Tribogenics' effort to bring products to market received a major boost on Tuesday, December 6, thanks to $2.5 million in funding received from Flywheel Ventures and an assortment of angel investors. The firm was founded in 2009 and appears to have completed the difficult step of finding commercial applications for pure research.

The guts of Tribogenics' ultra-portable X-ray machines can be traced, like so many other things, to DARPA. UCLA received research funding from the government agency in 2007; DARPA literature has detailed their hope that cheap, portable X-ray machines could revolutionize battlefield medicine, emergency first response, and airport security. Additional funding was received from the U.S. Army Telemedicine & Advanced Technology Research Center. The technology was later featured on the television show Mythbusters.

While no commercial products have been released by Tribogenics yet, several prototypes show potential. The company appears to be banking most of their hopes on a product called a Pocket XRF Analyzer (pictured), which representatives explicitly compared to a Star Trek tricorder. The XRF Analyzer, which is approximately the size of an iPhone, can identify gold or other precious jewels for jewelers, detect lead traces in toys, and can find traces of radioactive elements in airport security settings.

However, ultra-portable X-ray machines show the greatest potential for becoming a disruptive medical technology. Tribogenics' methods have revolutionary ramifications for catheterized radiation therapy, which currently poses significant radiation risks for patients, doctors, and nurses. According to Fox, the company's products eliminate the need for radioactive isotopes.

Release dates for Tribogenics products for the consumer market have not been announced; however, the firm claims that Pocket XRF Analyzers will drop to a price point affordable for the mass market--and not just for specialists. However, the firm will face challenges in transforming devices that generate large amounts of radiation into consumer products.

- Posted from my iPad2

Location:Georgetown TX, United States

Hydrogel helps grow new scar-free skin In treatment of third-degree burn

In third-degree burn treatment, hydrogel helps grow new, scar-free skin

In third-degree burn treatment, hydrogel helps grow new, scar-free skin

Johns Hopkins researchers have developed a jelly-like material and wound treatment method that, in early experiments on skin damaged by severe burns, appeared to regenerate healthy, scar-free tissue.

In the Dec. 12-16 online Early Edition of Proceedings of the National Academy of Sciences, the researchers reported their promising results from mouse tissue tests. The new treatment has not yet been tested on human patients. But the researchers say the procedure, which promotes the formation of new blood vessels and skin, including hair follicles, could lead to greatly improved healing for injured soldiers, home fire victims and other people with third-degree burns.

Dextran hydrogel for burn wound healing. (A) Surgery procedure: We placed wounds on the posterior-dorsum of each mouse and performed burn wound excisions after 48 h. We covered wounds with either dextran hydrogels or control scaffold, followed by their coverage with dressing. We covered the control wounds only with dressing. (B) Photo image of wound healing within 21 d demonstrate a more complete wound healing in burn wounds treated with dextran hydrogel than in wounds treated with control scaffolds or dressing alone.

The treatment involved a simple wound dressing that included a specially designed hydrogel—a water-based, three-dimensional framework of polymers. This material was developed by researchers at Johns Hopkins’ Whiting School of Engineering, working with clinicians at the Johns Hopkins Bayview Medical Center Burn Center and the Department of Pathology at the university’s School of Medicine.

Third-degree burns typically destroy the top layers of skin down to the muscle. They require complex medical care and leave behind ugly scarring. But in the journal article, the Johns Hopkins team reported that their hydrogel method yielded better results. “This treatment promoted the development of new blood vessels and the regeneration of complex layers of skin, including hair follicles and the glands that produce skin oil,” said Sharon Gerecht, an assistant professor of chemical and biomolecular engineering who was principal investigator on the study.

n early testing, this hydrogel, developed by Johns Hopkins researchers, helped improve healing in third-degree burns. Photo by Will Kirk/HomewoodPhoto.jhu.edu

Gerecht said the hydrogel could form the basis of an inexpensive burn wound treatment that works better than currently available clinical therapies, adding that it would be easy to manufacture on a large scale. Gerecht suggested that because the hydrogel contains no drugs or biological components to make it work, the Food and Drug Administration would most likely classify it as a device. Further animal testing is planned before trials on human patients begin. But Gerecht said, “It could be approved for clinical use after just a few years of testing.”

John Harmon, a professor of surgery at the Johns Hopkins School of Medicine and director of surgical research at Bayview, described the mouse study results as “absolutely remarkable. We got complete skin regeneration, which never happens in typical burn wound treatment.”

If the treatment succeeds in human patients, it could address a serious form of injury. Harmon, a coauthor of the PNAS journal article, pointed out that 100,000 third-degree burns are treated in U. S. burn centers like Bayview every year. A burn wound dressing using the new hydrogel could have enormous potential for use in applications beyond common burns, including treatment of diabetic patients with foot ulcers, Harmon said.

Guoming Sun, Gerecht’s Maryland Stem Cell Research Postdoctoral Fellow and lead author on the paper, has been working with these hydrogels for the last three years, developing ways to improve the growth of blood vessels, a process called angiogenesis. “Our goal was to induce the growth of functional new blood vessels within the hydrogel to treat wounds and ischemic disease, which reduces blood flow to organs like the heart,” Sun said. “These tests on burn injuries just proved its potential.”

Gerecht says the hydrogel is constructed in such a way that it allows tissue regeneration and blood vessel formation to occur very quickly. “Inflammatory cells are able to easily penetrate and degrade the hydrogel, enabling blood vessels to fill in and support wound healing and the growth of new tissue,” she said. For burns, the faster this process occurs, Gerecht added, the less there is a chance for scarring.

Originally, her team intended to load the gel with stem cells and infuse it with growth factors to trigger and direct the tissue development. Instead, they tested the gel alone. “We were surprised to see such complete regeneration in the absence of any added biological signals,” Gerecht said.

Sun added, “Complete skin regeneration is desired for various wound injuries. With further fine-tuning of these kinds of biomaterial frameworks, we may restore normal skin structures for other injuries such as skin ulcers.”

Gerecht and Harmon say they don’t fully understand how the hydrogel dressing is working. After it is applied, the tissue progresses through the various stages of wound repair, Gerecht said. After 21 days, the gel has been harmlessly absorbed, and the tissue continues to return to the appearance of normal skin.

The hydrogel is mainly made of water with dissolved dextran—a polysaccharide (sugar molecule chains). “It also could be that the physical structure of the hydrogel guides the repair,” Gerecht said. Harmon speculates that the hydrogel may recruit circulating bone marrow stem cells in the bloodstream. Stem cells are special cells that can grow into practically any sort of tissue if provided with the right chemical cue. “It’s possible the gel is somehow signaling the stem cells to become new skin and blood vessels,” Harmon said.

Neovascularization is a critical determinant of wound-healing outcomes for deep burn injuries. We hypothesize that dextran-based hydrogels can serve as instructive scaffolds to promote neovascularization and skin regeneration in third-degree burn wounds. Dextran hydrogels are soft and pliable, offering opportunities to improve the management of burn wound treatment. We first developed a procedure to treat burn wounds on mice with dextran hydrogels. In this procedure, we followed clinical practice of wound excision to remove full-thickness burned skin, and then covered the wound with the dextran hydrogel and a dressing layer. Our procedure allows the hydrogel to remain intact and securely in place during the entire healing period, thus offering opportunities to simplify the management of burn wound treatment. A 3-week comparative study indicated that dextran hydrogel promoted dermal regeneration with complete skin appendages. The hydrogel scaffold facilitated early inflammatory cell infiltration that led to its rapid degradation, promoting the infiltration of angiogenic cells into the healing wounds. Endothelial cells homed into the hydrogel scaffolds to enable neovascularization by day 7, resulting in an increased blood flow significantly greater than treated and untreated controls. By day 21, burn wounds treated with hydrogel developed a mature epithelial structure with hair follicles and sebaceous glands. After 5 weeks of treatment, the hydrogel scaffolds promoted new hair growth and epidermal morphology and thickness similar to normal mouse skin. Collectively, our evidence shows that customized dextran-based hydrogel alone, with no additional growth factors, cytokines, or cells, promoted remarkable neovascularization and skin regeneration and may lead to novel treatments for dermal wounds.
4 pages of supplemental information

- Posted from my iPad2

Location:Georgetown TX,United States

The electronic eye

Electric Eye: Retina Implant Research Expands in Europe, Seeks FDA Approval in U.S.: Scientific American

CHIPPING AWAY AT BLINDNESS: There is no effective treatment for retinitis pigmentosa, but researchers such as those at Retina Implant, AG, are making great strides to remedy this through implants that stimulate still-active nerves in the retina, the layer of tissue at the back of the inner eye. Image: Courtesy of Retina Implant, AG

Promising treatments for those blinded by an often-hereditary, retina-damaging disease are expanding throughout Europe and making their way across the pond, offering a ray of hope for the hundreds of thousands of people in the U.S. left in the dark by retinitis pigmentosa. The disease—which affects about one in 4,000 people in the U.S. and about 1.5 million people worldwide—kills the retina’s photoreceptors, the rod and cone cells that convert light into electrical signals, which are transmitted via the optic nerve to the brain’s visual cortex for processing.

There is no effective treatment for the condition, but researchers are making great strides to remedy this through implants that stimulate still-active nerves in the retina, the layer of tissue at the back of the inner eye. In mid-November Retina Implant, AG, got approval to extend the yearlong phase II human clinical trial of its retinal implant outside its native Tübingen, Germany, to five new sites—Oxford, London and Budapest, along with two additional locations in Germany.

The company’s implant is a three- by three-millimeter microelectronic chip (0.1-millimeter thick), containing about 1,500 light-sensitive photodiodes, amplifiers and electrodes surgically inserted beneath the fovea (which contains the cone cells) in the retina’s macula region. The fovea enables the clarity of vision that people rely on to read, watch TV and drive. The chip helps generate at least partial vision by stimulating intact nerve cells in the retina. The nervous impulses from these cells are then led via the optic nerve to the visual cortex where they finally lead to impressions of sight.

Thus far, some patients report having a narrow field of vision partially restored, providing them with enough acuity to locate light sources such as windows and lamps as well as detect lighted objects against dark backgrounds. The chip’s power source is positioned under the skin behind the ear and connected via a thin cable.

Window on the world
For those suffering with retinitis pigmentosa, Retina Implant’s technology creates a small black-and-white window on the world, says Eberhart Zrenner, the company’s co-founder and director and chairman of the University of Tübingen’s Institute for Ophthalmic Research in Germany. Retina Implant has successfully placed chips beneath the retina of nine patients since May 2010. A 10th patient experienced a problem when their optic nerve did not forward the information on the chip to the brain.

Looking ahead, Zrenner hopes to widen patients’ field of vision further. “Because our chip has independent miniature photodiodes, we could arrange three of them in a row beneath the retina,” he says. The ability to produce accurate colors via retinal implants, however, is very complicated and may not be possible for years, he adds. Retina Implant has also developed an outpatient treatment for early-stage retinitis pigmentosa called Okuvision, which uses electric stimulation to help preserve retinal cells.

Sights set on the U.S.
The phase II extension expands Retina Implant’s trial to an additional 25 patients beginning early next year and follows a partnership the company struck in March with the Wills Eye Institute in Philadelphia. Wills is looking to become the lead U.S. clinical trial investigator site for Retina Implant’s technology and to help the company through the U.S. Food and Drug Administration’s (FDA) review process.

Cutting-edge technologies such as sub-retinal implants are typically at a disadvantage when seeking FDA approval due to the lack of a track record, but Retina Implant’s work in Europe provides a precedent for the FDA to consider, says Julia Haller, Wills’s ophthalmologist in chief. “There’s information available to U.S. regulators about how patients have responded so far,” she adds.

Follow Scientific American

Scientific American Newsletter

Get weekly coverage delivered to your inbox.

Latest Headlines

Most Read

Most Commented

Latest Posts by SA Editors

Latest from SA Blog Network

YES! Send me a free issue of Scientific American with no obligation to continue the subscription. If I like it, I will be billed for the one-year subscription.

Science Jobs of the Week


Email this Article

Electric Eye: Retina Implant Research Expands in Europe, Seeks FDA Approval in U.S.

Please Log In


- Posted from my iPad2

Location:Georgetown TX,United States

Friday, December 9, 2011

Check out these free health apps.

If you have an iPhone, iPod or iPad, there are three free apps that may well be worth downloading.

The first is Itriage, the second is ICE standard, and WebMD. Check them out.

- Posted from my iPad2

Location:Georgetown TX,United States

Saturday, December 3, 2011

Doctors, Like Their Patients, Use Google for Health Information

Doctors, Like Their Patients, Use Google for Health Information - Health Blog - WSJ
By Katherine Hobson

Doctors: they’re just like us!

General web browsers like Google and Yahoo are behind only professional journals and colleagues as a source of information physicians frequently use to diagnose and treat patients, according to a survey of more than 300 doctors.

The survey, from Wolters Kluwer Health, covered a sample of American Medical Association members, both primary-care physicians and specialists. We weren’t too surprised to hear that “spending more time with patients” ranked highest on a list of areas in which doctors would like to see improvement. Nor was it particularly shocking to read that expense is a big barrier to adopting new health technologies.

But the Google and Yahoo findings initially surprised us. When doctors were asked how often they used certain sources to gain information used to diagnose, treat and care for patients, 68% said they “frequently” consulted professional journals and 60% said the same about colleagues. And just under half — 46% — said general web browsers. Conferences and events and online free services like WebMD were each cited by 42% of respondents as frequent sources of information.

Then again, no one says Google and Yahoo don’t lead people to tons of useful info — just that it can be tough to sort the wheat from the chaff. Physicians, presumably, can assess the quality of the health information they dig up better than the average consumer.
On that topic, the survey also asked whether improved access to medical knowledge by patients has a positive impact on the doctor-patient relationship: 53% said yes. About a fifth think it has “been detrimental, leading to misinformation and incorrect self-diagnosis,” the study found.

- Posted from my iPad2

Location:Georgetown,TX United States

A 3-D Printer Makes Customized Human Bones To Order

A 3-D Printer Makes Customized Human Bones To Order |
Popular Science

By Clay Dillow Posted 12.02.2011 at 9:59 am

This Machine Prints Bones via WSU
We’re already printing organs to order, so why not Cmd+P some customized 3-D bone? Washington State University researchers have tweaked a 3-D rapid prototyper designed to create metal parts to print in a bone-like material that acts as a scaffold for new bone cells. In just a few years, the researchers say, doctors and dentists could be printing up custom bone tissue to order.

Reported in the journal Dental Materials, the bone-like material appears to cause no negative side effects and eventually dissolves. But before doing so, it serves as a scaffold for new bone cells. Placed in a medium of immature human bone cells, the printed structures encourage the growth of new bone that fuses with existing bone tissue.

“If a doctor has a CT scan of a defect, we can convert it to a CAD file and make the scaffold according to the defect,” Susmita Bose, co-author and professor in WSU’s School of Mechanical and Materials Engineering, said in a press release.
In terms of potential for regenerative medicine, that’s fairly huge. It opens the door to the ability to create perfect—or nearly perfect—replacement implants for damaged or deformed bone tissue and grow new, corrective bone that is the real thing rather than a ceramic or metal analog. And the procedure is relatively fast. Networks of new bone cells reportedly grew within the 3-D printed structures within just a week of placing them in a culture with immature bone cells.

- Posted from my iPad2

Location:Georgetown,TX United States

Thursday, December 1, 2011

The Future of Medicine

Megatrends: The Future of Medicine: Megatrends in Medicine - by Dr. Stephen C. Schimpff, MD

The Megatrends - The Future of Medicine

Over the next decade, medical care will improve rapidly and dramatically, thanks to advances in genomics, stem cells, vaccines, medical devices, imaging and new approaches in the operating room.

What will these megatrends mean to you?

Genomics will allow tomorrow’s physician to predict at birth or before what major diseases a person is likely to develop, such as coronary artery disease. Vaccines will be created specifically to treat an individual person’s cancer. Stem cells will be used to regenerate a specific tissue lost to trauma or disease.

Surgery will be based on the individual’s own CAT scan image which will be used first to simulate that individual’s proposed operation, then to practice it to perfection and then to program a robot to assist. Drugs will be created to attack a specific target and will be prescribed for the individual patient based on genomic knowledge of their disease and how their body will respond to the specific drug – more effective, less side effects and much safer.

Preventive medicine will advance rapidly as genomic information tells what an individual is likely to develop over time. Then the physician can prescribe a personalized preventive program for that person such as life style changes to prevent coronary artery disease or early institution of colonoscopy for the person at very high risk of early colon cancer. Vaccines will be available to prevent increasing numbers of serious infectious disease but also to prevent atherosclerosis, some cancers, and can be used to help treat or prevent some chronic conditions like Alzheimer’s, multiple sclerosis and even drug addiction.

Surgical advances will allow repairs never available before such as replacing heart valves with minimally invasive surgery rather than today’s’ open surgery with heart lung bypass. Stem cells will mean that a pancreas deprived of its islet cells can be replaced with cells that will create insulin as the body requires. Stem cells will also repair the heart after a heart attack. Organ transplants will no longer depend another person’s else’s death; rather the organ will be produced in a pig raised specifically to have an organ that will not cause rejection after transplant – more functional and no need for anti-rejection drugs.

Your medical information will finally all be digitized and instantly available any time and any place either via the internet or placed on a chip embedded in an ID card in your wallet. This will include not only your doctor’s notes but copies of your images from radiology, colonoscopy, or surgery along with a base line CAT scan taken at age 18 that can be compared to later when trauma or disease strikes. It will also include your entire genomic information. And it will be available only with your release of the password.

Finally, medicine will become truly safe. A full change in culture will make safety issue number one and this will be augmented by new technologies that will assist the healthcare provider to make care safe. Included will be access to your medical information at a moments notice, use of new drugs and vaccines designed for you based on your genomic information, use of robots in surgery that cannot make errors and the use of simulation to assist doctors learn new techniques and procedures.

The result will be a new era in medical care, one where the patient comes first, is safe, can be assured that a medicine will work without side effects, that surgery will be custom tailored and where real attention will be paid to preventing disease before it occurs.

Stephen C. Schimpff, M.D.

- Posted from my iPad2

Location:Georgetown TX,United States

Saturday, November 26, 2011

Artificial pancreas could be 'holy grail' for Type 1 diabetics

Artificial pancreas could be 'holy grail' for Type 1 diabetics - CNN.com

By Saundra Young, CNN Medical Senior Producer
updated 8:31 AM EST, Sat November 26, 2011

A trial patient for the Juvenile Diabetes Research Foundation’s Artificial Pancreas Project tests the device.

(CNN) — Kerry Morgan was just 3 years old when she participated in her first clinical trial for type 1 diabetes prevention. She didn’t have the disease, but her 7-year old sister did and there was concern that she might develop it, too. During the trial she was given one shot of insulin a day in the hope that it would stave off the disease, but a year later, she was officially diagnosed.

“I remember a lot of things changed.” Morgan said. “I went from having juice every day and M&Ms to not having sugar at all. I remember getting shots every day, finger pricks, my parents had to hold me down.”

School, she says was difficult. “You had to let teachers know what was going on. You had a special relationship with the nurse because she had to check your blood sugar every day before going to lunch.”

At 14 she entered a second trial, this one at the University of Virginia, for a continuous glucose monitoring system called The Navigator. It was at UVA that she first learned about the artificial pancreas. A high school senior at 18 now, she has participated in four clinical trials and two have involved artificial pancreas systems.

“It was awesome. I’ve never done anything quite like it before. For the two days that I was on the artificial pancreas I experienced normalcy. I wasn’t checking myself every five seconds and giving myself insulin because it was doing it for me.”

In type 1 diabetics, the pancreas makes very little or no insulin, a hormone that controls glucose levels, or the amount of sugar in your blood. Patients must constantly check their levels throughout the day, determine how much insulin they need to lower their blood sugar and administer the proper amount using a pump or syringe. Drops or spikes in blood sugar can be extremely dangerous. If the level is too low — a condition called hypoglycemia — patients can experience shakiness, confusion, trouble speaking, seizures, even coma and death. A level that is too high — hyperglycemia — can cause excessive thirst, frequent urination and cardiac arrhythmia. Left untreated, hyperglycemia can lead to a number of serious complications including vision loss and nerve damage.

An artificial pancreas mimics the glucose regulating function of a healthy pancreas. The automated device features a sensor that’s placed under the skin that measures blood sugar. Information from this continuous glucose monitor is sent to a receiver and an insulin pump delivers insulin in controlled amounts. A glucose meter calibrates the sensor. Sophisticated software checks the blood sugar in the body and automatically provides the correct dose of insulin needed at the right time.

“When you have diabetes, every second you’re thinking about your blood sugar,” says Morgan. “You’re wondering if you’re high, if you’re low, if you’re OK, if you’re giving yourself enough insulin, if you’re not giving yourself enough insulin. With the artificial pancreas it takes that worry away because it’s doing it for you. It lets you know if something’s wrong. That way you’re not always worrying about your blood sugar.”

The device has not yet been approved by the U.S. Food and Drug Administration. In June the agency issued a draft guidance seeking input from the industry and researchers on an early version of the artificial pancreas, called the low glucose suspend system. It’s a backup for diabetics experiencing hypoglycemia. Patients still have to monitor their levels and give themselves insulin if necessary, but the low glucose suspend system temporarily reduces or stops the insulin flow in the event of an episode.

There are two types: A reactive low glucose suspend system that stops insulin infusion when a predetermined level has been reached, and a predictive low glucose suspend system that anticipates a hypoglycemic event based on the current blood sugar level and how fast those levels are falling.

Dr. Charles Zimliki chairs the FDA’s Artificial Pancreas Critical Path Initiative and he is a type 1 diabetic. Testifying before a Senate committee in June, he said the FDA is committed to seeing the device come to market but is proceeding with caution.

“While the potential benefits are enormous, an artificial pancreas system is considered a significant-risk device, meaning it presents a potential for serious risk to the health, safety or welfare of a patient. If not properly designed, use of an artificial pancreas device in an outpatient setting can place patients at significant risk, because the device controls the administration of insulin without the oversight of health care professionals.”

The FDA is expected to release new guidance for future generations of the artificial pancreas systems on December 1. The Juvenile Diabetes Research Foundation has been working closely with the FDA on the artificial pancreas. It says low glucose suspend systems have been in use in more than 40 countries for the last 2½ years and the process in the United States is taking much too long.

“Here in the U.S. we’re now almost three years behind and the first study to test these systems is just going to launch in the next month, which means it’s going to be another year or so before patients even have access,” said Aaron Kowalski, assistant vice president of treatment therapies for the foundation. “What JDRF is advocating for is to ensure that people here in the U.S. have access to these tools in a timely manner.”

The FDA says other countries have different regulatory systems in place that do not require the same safety and effectiveness data for a product of this level of risk.

Tom Brobson, a 51-year-old Christmas tree farmer and the national director for donor relations at JDRF was diagnosed eight years ago with type 1 diabetes. “I think they’re getting hung up on better when good enough can do the job. You can’t get better until it’s out there being used. We know that technology isn’t perfect, but what we’re talking about are significant improvements and enhancements over what we have today that can significantly reduce the daily burden of living with this disease, improve quality of lives and save lives.”

Brobson has been participating in artificial pancreas clinical trials at UVA since 2007. “It’s been awesome, fantastic, frankly everything I could ever imagine it to be and then some,” he says. “The open question for me was could a computer system using off-the-shelf technologies do a better job of controlling my blood sugar than I was already doing for myself and the answer turned out to be overwhelmingly yes.”

Without it, Brobson says he has to spend every minute managing his diabetes. “I have to be my own pancreas 24 hours a day. Last thing at night, first thing in the morning and often in the middle of the night. When the artificial pancreas took over, that was a real power moment. It kept me perfect from 8 p.m. to 8 a.m. When the artificial pancreas took over moment to moment when it was actively assisting me in the management of my disease, it was a life changing moment and it was life changing because I didn’t have to think about my diabetes every moment of the day.”

Dr. Michelle Magee is an endocrinologist and director of the MedStar Diabetes Institute at Washington Hospital Center in Washington, D.C. “The data from other countries showed that the system could be used safely and effectively. It’s been somewhat disappointing that it has taken so long to get approval here.”

She says the long awaited system offers hope to patients. “For people with type 1 diabetes, the artificial pancreas has been kind of the holy grail of technology to support self management of diabetes. It’s not going to cure it, but it’s going to be a huge step in the right direction. Once it’s approved and can be used it will be fantastic.”

According to the Juvenile Diabetes Research Foundation, about 80 people a day are diagnosed with type 1 diabetes. Approximately 3 million Americans are living with the disease. Most of them only have healthy blood sugars 30% of the day. The foundation says it has spent $1.5 billion on diabetes research, $40 million of that on research on artificial pancreas systems.

“Our goal is to drive the development of artificial pancreas systems,” Kowalski said. “This could not only improve tremendously glucose control, and help reduce the risk of these terrible diabetes complications, it could also help people with diabetes live easier. The bottom line is diabetes is a 24 hour a day, 7 day a week, 365 day a year job and if we can make some of that easier that would be a huge step forward.”

Morgan agrees. “I think it’s superimportant, I think next to having a cure for diabetes it’s the big thing. Because it’s such an instrumental piece of equipment it can allow you to live closer to what we consider normal than anything that we have now.”

- Posted from my iPad2

Location:Georgetown TX,United States

Tuesday, November 22, 2011

How about a wireless pacemaker?

Next-Gen Cardiac Care Includes Wireless Pacemakers:

WiCS: In the new pacemaker called the Wireless Cardiac Stimulation (WiCS) system, a wireless electrode replaces one or more leads. A conventional pacemaker is implanted just below the collarbone in the left side of the chest and sends out a signal through a lead running into the heart’s right side. The WiCS unit, implanted near the heart, wirelessly senses the pacemaker’s pulse via this lead; it then sends an ultrasonic signal to the wireless electrode on the left side, which converts the sonic energy into electrical energy to pace the left ventricle synchronously with the right. Image: Courtesy of Cambridge Consultants

Millions of pacemakers have been successfully implanted in the past half century to regulate erratic heartbeats, but the electrical leads, which connect the device to the heart, complicate the surgery and increase infection risks. The heart’s continuous and vigorous beating also creates strain on the leads and can damage them over time.

Now researchers seek to go wireless. In a new pacemaker called the Wireless Cardiac Stimulation (WiCS) system, a wireless electrode replaces one or more leads. California start-up EBR Systems, working with English technology-development firm Cambridge Consultants, recently announced their system was successfully implanted in 100 patients needing cardiac resynchronization therapy (CRT) during a series of human clinical trials in Europe. (Wireless signaling is not entirely new to pacemakers—doctors have for the past few years been able to communicate with them via the Internet or even smart phones.) CRT patients suffer from a type of chronic heart failure requiring both the left and right ventricles to be paced. Normally, such devices require the implantation of three leads, the trickiest of which is threaded through a complex route running from the right atrium, into the coronary sinus on the outside surface of the heart, and then to the left ventricle. In the new device, a small electrode inserted in the left side of the heart replaces one or more of the leads. In the system, a conventional pacemaker, implanted just below the collarbone in the left side of the chest, sends out a signal through a lead running into the heart’s right side. The WiCS unit, implanted near the heart, wirelessly senses the pacemaker’s pulse via this lead; it then sends an ultrasonic signal to the wireless electrode on the left side, which converts the sonic energy into electrical energy to pace the left ventricle synchronously with the right. Advances in low-power microelectronics and improved digital signal processing at high speed and low power enabled the system, says Andrew Diston, Cambridge’s director of global medical technology. The ultimate goal is to eliminate all wire leads, making the pacemaker easier to implant. Another goal is to integrate the functions of the conventional pacemaker and the WiCS into a single device. Wireless technology is notoriously tough on battery life. Diston says that most of the pacemaker’s battery—generally lasting seven or eight years before needing to be replaced—is still dedicated to monitoring the heart and deciding when to pace. The WiCS system has its own battery, and no modification to existing pacemakers is required, he added. Diston is hesitant to set a time frame for the system’s availability to the general public. WiCS continues to be tested in human clinical trials in Europe and will first be available there. Before it is made available in the U.S., it will need successful clinical trials here and approval from the U.S. Food and Drug Administration.

WiCS is potentially a disruptive technology, says Bruce Wilkoff, director of cardiac pacing and tachyarrhythmia devices at the Cleveland Clinic, who was not involved with the research. It is still immature, he adds, because it requires other components to coordinate the stimulation. Given that wireless technology is typically not as reliable as its wired counterpart, the largest concern involves the signal—whether the ultrasound will penetrate the heart muscle consistently and efficiently transfer energy to the wireless lead, Wilkoff says. Still, he adds, “I don’t think that there is any concern about safety.”

Pacemakers in general require patients to take certain safety precautions, such as not placing cell phones directly against the chest and avoiding strong electric or magnetic fields. Whereas some newer pacemakers are not affected by magnetic resonance imaging (MRI) scans, patients should consult their physicians before undergoing such tests. The addition of wireless to a pacemaker does not change the need to take these precautions.

Some experiments to “hack” into pacemakers capable of communicating wirelessly with computers and smart phones have been demonstrated by security researchers, but there have been no reported incidents of wireless pacemaker data being tampered with to the detriment of a patient. Still, researchers from the Massachusetts Institute of Technology and the University of Massachusetts Amherst say they are developing a jamming device that could be used to shield pacemakers from cyber attackers.

EBR and Cambridge are not only ones working on wireless pacemakers. Minneapolis-based Medtronic, Inc., last year introduced plans for a small, self-contained and fully leadless pacemaker the company hopes to market within three or four years. The Medtronic titanium-encased device will have a circuit board, an oscillator to generate current, a capacitor to store and rapidly dispense charge, memory to store data, and a telemetry system to wirelessly transfer that data to a computer or smart phone.

Unlike WiCS, however, Medtronic’s bullet-shaped pacemaker, about the size of an antibiotic pill, would be delivered directly into a patient’s right ventricle through a catheter, without surgery. Unfortunately, as currently designed, the Medtronic device could not be repositioned or retrieved from the heart after its seven-year battery failed. It would remain in the heart to be replaced by a new miniature pacemaker.

- Posted from my iPad2

Location:Georgetown TX,United States

How about getting an EKG with your iPhone?

From Red Ferret

It seems that almost every day I’m amazed by what smartphones can do. Sure, making calls, sending emails and checking the weather are cool, but some companies are really making the most of these devices. Take, for instance, this iPhone ECG that is currently being developed.

This ECG is a case that will attach to your iPhone, and provide you with an accurate ECG reading, with nothing more than a phone. It can be used either in your hands, or against the chest to take a reading. The results can be stored both locally, and uploaded elsewhere via WiFi. You can perform breathing exercises for relaxation, and use the ECG to see how your heartbeat corresponds to the relaxation. The device is still awaiting approval by the government as a proven medical instrument, so it may still be a little while before we see these on the market. There is also an Android version in the works.

- Posted from my iPad2

Location:Georgetown TX,United States

Monday, November 21, 2011

Lab created blood used in transfusion

For the First Time, Lab-Grown Blood Is Pumped Into a Human's Veins | Popular Science popsci.com
By Sean Kane Posted 11.11.2011 at 2:57 pm

Artificial blood may become a common reality, thanks to the first successful transfusion of lab-grown blood into a human. Luc Douay, of Pierre and Marie Curie University, Paris, extracted hematopoietic stem cells from a volunteer’s bone marrow, and encouraged these cells to grow into red blood cells with a cocktail of growth factors. Douay’s team labeled these cultured cells for tracing, and injected 10 billion of them (equalling 2 milliliters of blood) back into the marrow donor’s body.

After five days, 94 to 100 percent of the blood cells remained circulating in the body. After 26 days, 41 to 63 percent remained, which is a normal survival rate for naturally produced blood cells. The cells functioned just like normal blood cells, effectively carrying oxygen around the body. “He showed that these cells do not have two tails or three horns and survive normally in the body,” said Anna Rita Migliaccio of Mount Sinai Medical Center in New York.

This is great news for international health care. “The results show promise that an unlimited blood reserve is within reach,” says Douay. The world is in dire need of a blood reserve, even with the rising donor numbers in the developed world. This need is even higher in parts of the world with high HIV infection rates, which have even lower reserves of donor-worthy blood.

Other attempts to synthesize blood have focused on creating an artificial blood substitute, rather than growing natural blood with artificial means. For example, Chris Cooper of the University of Essex in Colchester, UK, is working on a hemoglobin-based blood substitute that is less toxic than the protein in its unbound state. Artificial blood substitutes present a solution for transfusions after natural disasters and in remote areas. The artificial substitutes do not require refrigeration, unlike fresh and stem cell-grown blood.

The stem cell method has its own pros, though. “The advantage of stem cell technology is that the product will much more closely resemble a red cell transfusion, alleviating some of the safety concerns that continue around the use of the current generations of artificial products,” says Cooper.

While Douay’s results, published in the medical journal Blood, are a major step forward, mass-produced artificial blood is still a long way away. A patient in need of a blood transfusion would require 200 times the 10 billion cells that Douay and his colleagues used in the test. Robert Lanza, one of the first people to grow red blood cells in a lab on a large scale, suggests using embryonic stem cells, which could generate 10 times the amount grown by Douay.

- Posted from my iPad2

Location:Georgetown TX,United States

Friday, November 18, 2011

$0.99 iPad 2 app does vital signs

App Measures Vital Signs Using iPad Camera | Gadget Lab | Wired.com
Wired | by Charlie Sorrel on November 17, 2011

Doctor iPad is in the house

Amazingly, it’s possible to count your heart rate just by observing tiny changes in the color of your skin, caused by the movement of blood through the body. Even more amazingly, it’s possible to detect these changes using the terrible camera in the iPad 2.

The app that performs this double-rainbow of technological magic is Philips Vital Signs Camera. It uses the front-facing camera of the iPad to both track the rising and falling of your chest to determine breathing rate, and the small changes in skin color to track heart rate.

Incredibly, it actually seems to work.

I downloaded the app and tried it out. You need to sit still in a well-lit area and make sure your face and chest are in the correct parts of the screen (there are colored rectangular guides to help). That’s it. The default settings stop when a measurement has been determined, and you can just read them or inflict them on your friends via Facebook or Twitter.

It’s certainly no replacement for a proper doctor, but as a technological demonstration, it’s surprisingly impressive. The app is available now, for $1.
- Posted from my iPad2

Location:Georgetown TX,United States

Wednesday, November 16, 2011

A New Small Cardiac Assist Device

Devices - The Future of Medicine

Cardiac Assist Device

Let’s consider some other devices that can be helpful for patients with heart problems, in particular, patients with heart failure. I will illustrate with the story of Ron Caspian, a fifty-nine-year-old analyst with one of the think tanks that surround Washington, DC. In the fall of 2002, he developed some chest discomfort one Saturday morning. His wife and daughter were out shopping, so he drove himself to the nearby emergency room where it was quickly confirmed that he was having a heart attack.

Indeed, his heart rapidly began to fail, and he was rushed to the cardiac catheterization laboratory where an angioplasty was performed. This opened up the major blocked artery, but his heart muscle was dangerously weak. His cardiologist telephoned a cardiac surgeon at the hospital where I worked and asked if he could transfer the patient while adding, “But I’m not sure you’ll be willing to accept him.”

The surgeon, never one to give up easily, asked, “Why not?” “Well, because despite the angioplasty, his pulse is very rapid, his blood pressure is zip, his kidneys are not making much urine, and his blood flow is so limited he is semi-comatose.” “Send him quick,” said the surgeon, who geared up to insert a cardiac assist device. The idea is to let the heart rest while a mechanical device does much of the pumping for the heart. It is hoped that after a few days the heart may regain some of its function and be able to carry on its role once again.

So Mr. Caspian was transferred, and the cardiac assist device was installed. It is about the size of your fist and fits around a portion of the heart and through a pneumatic system helps the heart pump blood to the body. The large pneumatic driver that powers the assist device is housed in a small suitcase-like affair that the patient must keep next to him all the time.

I saw this gentleman when I came to work on Monday morning, and he certainly did not look well-although the surgeon was quite pleased. By Wednesday, Mr. Caspian was sitting up and really looking pretty good. This was remarkable because there is no question he would have died on Saturday afternoon if not for the quick work of the cardiologist in doing an emergency angioplasty and the cardiac surgeon in implanting the cardiac assist device.

After a few more days, however, it became evident that Mr. Caspian’s heart was just not going to recoup and that he would need a heart transplant to survive. But a heart for transplantation becomes available only every so often, and in fact, most patients die before a heart is ever available.

What to do? The cardiac surgeon decided-with the advice and consent of both the patient and his wife-to try a new device. It is about the size of a D battery, like the one you use in your flashlight, with a little electric turbine inside; yet it can move blood, not quite in the amounts that a normal heart can pump, but still enough to keep the body functioning at a fair level of activity.

The surgeons tell me it is quite easy-for a skilled surgeon-to insert, but the description I am about to give you may not sound all that simple. First, the chest is opened, and then the tip end (apex) of the heart is opened, and this battery-sized device is inserted and sewn into place. Coming out from the heart is a tube about an inch in diameter, which goes to the aorta, that large artery that sends blood to the rest of the body. Also a wire from the little turbine comes out through the chest and hooks onto a battery about the size of a cell phone that can be hooked to your belt. The chest is sewn up. Using electricity from the battery, the turbine moves the blood from the heart out through the tube up to the aorta and into the body.

This device is much smaller than the larger assist device that Mr. Caspian first had installed; it can be left in place for quite some time, and it runs on batteries. Indeed, some even think that this may prove to be a long-term alternative to a heart transplant, a “destination” device if you will. This was placed into Mr. Caspian’s chest, and he did great. He was shortly up and about and after a time went home.

Then about three months later, a heart became available and he had a cardiac transplant. I saw him one day in the hospital coffee shop, and he said that he was going to retire. “I’ve been eligible for three years now and frequently thought about it, but after 9-11 there was so much work to be done at our organization that I just couldn’t leave. But now I know I need to avoid the stress and take care of myself. I have a new lease on life, and I want to make good use of it.”

That all sounded pretty logical to me, but when I saw him again six months later he said, “Well, I just started back to work. They made me an offer I couldn’t refuse. I really need to get out of the house and do some constructive things. But I will be careful. I feel really good, but I do know I need to not get overstressed.”

- Posted from my iPad2

Saturday, November 12, 2011

How Steve Jobs mentored a physician and changed health care

How Steve Jobs mentored a physician and changed health care

Published on October 6th, 2011kevinmd.com
How Steve Jobs mentored a physician and changed health care

I’ve been reading A Game Plan for Life: The Power of Mentoring written by famed UCLA basketball coach John Wooden. Wooden spends half of his book thanking the people who had a powerful influence on his life, coaching, philosophy, and outlook on life. Important people included his father, coaches, President Abraham Lincoln, and Mother Theresa.

Yes, President Abraham Lincoln and Mother Theresa.

Though clearly he could have never met the former and didn’t have the opportunity to meet the latter, Wooden correctly points out that as individuals we can be mentored by the writings, words, and thoughts of people we have never and will likely never meet.

Which seems like the most opportune time to thank one of my mentors, founder and former CEO of Apple, Steve Jobs.

Now, I have never met nor will I ever meet Steve Jobs. Lest you think I’m a devoted Apple fan, I never bought anything from Apple until the spring of 2010. Their products though beautifully designed were always too expensive. I’m just a little too frugal. I know technology well enough that people mistaken me for actually knowing what to do when a computer freezes or crashes. Yet, the value proposition was never compelling enough until the release of the first generation iPad. Then the iPhone 4. Finally the Macbook Air last Christmas.

No, thanking Steve Jobs isn’t about the amazing magical products that have changed my life as well as millions of others. It’s more than that. What he has mentored me on is vision, perspective, persistence, and leadership. Nowhere is this more important than the world I operate in, the world of medicine. Increasingly health care is fragmented, confusing, and frustrating for patients. As Dr. Atul Gawande noted in his commencement to Harvard Medical School:

Everyone has just a piece of patient care. We’re all specialists now—even primary-care doctors. A structure that prioritizes the independence of all those specialists will have enormous difficulty achieving great care.

We don’t have to look far for evidence. Two million patients pick up infections in American hospitals, most because someone didn’t follow basic antiseptic precautions. Forty per cent of coronary-disease patients and sixty per cent of asthma patients receive incomplete or inappropriate care. And half of major surgical complications are avoidable with existing knowledge. It’s like no one’s in charge—because no one is. The public’s experience is that we have amazing clinicians and technologies but little consistent sense that they come together to provide an actual system of care, from start to finish, for people.

We don’t have an actual system of care. A majority of doctors still use paper charts and prescription pads which can be difficult to access or decipher (doctors have poor penmanship?) and communicate with colleagues via letters, faxes, and phone calls. In an industry which is information driven, this seems too antiquated to be true. Hospitals each have their own unique system of care and their is little standardization which means both patients and doctors need to learn new rules with each new hospital. Patients cannot invest in long term relationships with their doctors because they change jobs, their company or their doctors dropped their previous insurance plan.

What we have is a potpourri of doctors, hospitals, pharmacies, and health insurers cobbled together to form a “health care system”. For a patient, the number of combinations is staggering. Each experience varies depending on who they see, what insurance coverage they have, and the type of (or lack of) information technology their doctors have. Many doctors today still bristle at the possibility that they actually need to email their patients and as a result don’t offer that as a way of communication or education.

In the end, what patients and doctors really want sits at the intersection of humanity and technology. Patients want doctors who know them as individuals, use medical technology thoughtfully, and a system that is highly reliable, safe, and focused on them to stay well or get them better. Doctors want patients who are partners in their care, technology that enables them to get the accurate information they need real-time, and a system that is streamlined to allow doctors to be healers.

In other words, we need a better health care system for both parties.

As a practicing primary care doctor, his words inspire me to help work towards creating a system which “simply works” for both doctors and patients. Some of the most important quotes that has shaped my thinking include:

“Innovation has nothing to do with how many R&D dollars you have. When Apple came up with the Mac, IBM was spending at least 100 times more on R&D. It’s not about money. It’s about the people you have, how you’re led, and how much you get it.”
— Fortune, Nov. 9, 1998

“It’s really hard to design products by focus groups. A lot of times, people don’t know what they want until you show it to them.”
— BusinessWeek, May 25 1998

“It comes from saying no to 1,000 things to make sure we don’t get on the wrong track or try to do too much.”
— BusinessWeek Online, Oct. 12, 2004

“Do you want to spend the rest of your life selling sugared water or do you want a chance to change the world?”
— The line he used to lure John Sculley as Apple’s CEO, according toOdyssey: Pepsi to Apple, by John Sculley and John Byrne

“So you can’t go out and ask people, you know, what the next big [thing.] There’s a great quote by Henry Ford, right? He said, ‘If I’d have asked my customers what they wanted, they would have told me “A faster horse.” ‘ ” – CNN / Money

“My job is to not be easy on people. My job is to make them better. My job is to pull things together from different parts of the company and clear the ways and get the resources for the key projects. And to take these great people we have and to push them and make them even better, coming up with more aggressive visions of how it could be.” – CNN / Money

“Your time is limited, so don’t waste it living someone else’s life. Don’t be trapped by dogma — which is living with the results of other people’s thinking. Don’t let the noise of others’ opinions drown out your own inner voice. And most important, have the courage to follow your heart and intuition. They somehow already know what you truly want to become. Everything else is secondary.” – Stanford 2005 commencement address

- Posted from my iPad2

Location:Georgetown TX,United States

Tuesday, November 8, 2011

Personalized medicine, really?

The Revolution of Personalized Medicine | ParisTech Review

From risk profiling to gene therapy and molecular diagnostics, personalized medicine opens new, exciting fields to medical research. Not only is it good news for the patients: considerable improvements are at stake, both for health systems and pharmaceutical firms now struggling to reinvent themselves. But the road ahead is still full of obstacles.

The concept of personalized medicine was introduced two decades ago by the Swiss company Roche. The initial concept was based on a simple reality in medical practice: the same drug may induce different reactions according to patients, and for a given patient, some drugs work while others don’t. With the introduction of a treatment of breast cancer in the 1990’s, Roche demonstrated that it was possible to anticipate which patients would or would not benefit from the treatment.

It became therefore possible to personalize treatments, that is to administer a drug only to those patients who would react positively to it. The impact of this new approach is huge: a better efficiency, less side-effects, and no more waste of time and resources spent on a treatment that does not work.

Five new approaches
This first form of personalized medicine opened the way to five different approaches.

Stratified medicine is the approach developped by Roche for its treatment of breast cancer, Herceptin: it consists in dividing patients in four groups, depending on their reaction to a drug regarding efficiency and side-effects. The drug is given only to the group who reacts positively and does not display side-effects.

Oncological vaccination is another form of personalized medicine whereby the patient’s immune system is “trained” to destroy tumor cells. This result is obtained by re-injecting a sample of a patient’s own cells after an external treatment. The treated cells are designed to stimulate the patient’s immune system specifically against tumor cells.

Tissue reconstruction is a promising new area. It can be done by implanting cells that have the capacity to grow on a damaged tissue and repair it. The cells can either come from the patient himself after an external treatment, or they can be stem cells donated by others.

Gene therapy aims at changing the genome of a patient, in order to remove the mutation at the origin of a disease. Gene therapy can be divided into persistent DNA transfection, transient DNAA transfection, and RNA therapy. Persistent DNA therapy has been almost abandoned today: changing permanently the genome of somebody can have implications in the long term, even after the patient’s death, since genome modifications are transferred to his offspring. It also often has consequences on other biological processes that cannot be predicted. Current research is now concentrating on the other two approaches, which have the benefit of being reversible. The first drugs are now reaching the market, an interesting example being Glybera, the first effective treatment of LPLD, a rare disease where patients have a deficiency in a protein called LPL, which induces diabetes and cardiovascular diseases.

Risk profiling is probably the most publicized form of personalized medicine: by sequencing a patient’s genome, it becomes now possible to measure the risk that a person develops a disease in the future. As the total cost of sequencing the entire genome of a person goes down every year, it will soon be possible for everyone to obtain his own genome sequence, and therefore his risk profile for a number of diseases. Besides, some other, more accurate forms of risk profiling exist: in cardiology for example, by measuring the concentration level of a certain protein in the blood, it becomes possible to accurately predict the risk for a patient to have a cardiovascular accident (stroke, heart failure) in the coming months or years.

Risk profiling is a particularly important aspect of personalized medicine, since it opens the way to prevention, a huge potential source of well-being for people and cost-savings for healthcare systems.

To understand why and how the whole healthcare industry is now turning to personalized medicine, one has to take a look at the scientific revolution that triggered this paradigm shift.

Molecular diagnostics: the underlying driver
For the last 10 years, improving R&D productivity has been one of the key challenges for pharmaceutical companies. With most of their top-selling drugs going off-patent between 2004 and 2012 and not enough new products coming up to compensate for the loss, this wealthy industry has been facing an increasing pressure for more innovation.

Streamlining management of R&D projects, forming alliances, building long-term agreements with academic or biotech research teams, licensing-in research projects with sophisticated deal structures have been typical and sometimes very effective responses to this challenge. However, none of these approaches have really addressed the central problem of pharmaceutical R&D today. To find new drugs tomorrow, scientists will need to better understand the molecular processes that govern diseases, and how genetic diversity of patients influences treatment outcomes.

In parallel, the industrialization of molecular biology techniques has led to significant progress in the detection and analysis of molecules of ever-increasing complexity such as long DNA/RNA fragments, proteins, or even entire cells. These techniques have allowed scientists to gain a much more accurate understanding of the molecular processes which are at the origin of many diseases. The potential of what is now called molecular diagnostics is immense, not only in R&D, but in daily medical practice as well.

At the other end of the spectrum, healthcare systems in most countries are under high pressure. They are no longer reimbursing “me-too” drugs that do not add any medical value on top of existing treatments; and they are now also, in some cases, paying only if the treatment outcome is positive. A growing number of healthcare systems admit the need for return on investment – once a taboo.

Molecular diagnostics are providing the scientific answer to both of these challenges: not only are they improving R&D productivity, but they are also providing clinicians with powerful tools to better understand what they are doing and how effective their treatment decisions are. Hence in the end, they treat their patients better, at a lower cost.

Molecular diagnostics and biomarkers: a few definitions
Molecular diagnostics detect and measure specific molecular targets using selective probes; they are always associated with a visualization method. The value of these targets – called biomarkers – is that they correlate with a disease, or sometimes even are the root cause of it. Biomarkers can be of very different nature, ranging from simple small molecules (like metabolites) to complex structures such as proteins, nucleic acids, or even entire cells.

Finding the right biomarker that will enable clinicians to understand and accurately track the progression of the disease – or the response to a therapy – is one of the key challenges of pharmaceutical research today. Indeed, there is often no direct causality between a biomarker and the disease/response. Some biomarkers may be representative of several diseases and conversely, it might be necessary to detect several biomarkers to identify a disease.

Detection and amplification technologies have made huge progress in recent years and have become the main drivers in the development of molecular diagnostic tools. The most well-known methodology is Polymerase Chain Reaction (PCR), but others such as Micro-Arrays, Fluorescent In-Situ Hybridization (FISH), immunohistochemistry, Fluorescence-Activated Cell Sorting (FACS) and many others have now reached maturity.

The role of biomarkers in the pharmaceutical value chain
Biomarkers play an important role at all levels of the pharmaceutical value chain: very early in the discovery process, during product development, and also at the patient’s level, for prevention, treatment monitoring and disease management.

Biomarkers can be sorted in three categories; their role depends on where they are used in the value chain.

Discovery biomarkers are molecular entities that are usually identified during the early discovery process of a new drug. These biomarkers are related to the biological target, and are used to validate disease mechanisms, probe potential toxicological effects or anticipate potential genetic variations in drug response. The hope of many pharma R&D executives is that they will help reach proof of concept in humans quicker: the idea is to be able to perform clinical trials safely, with very low doses, on a few patients much earlier, before even the full pre-clinical package has been completed. Drugs that are shown not to work in these early trials would then be eliminated earlier, which in turn would allow more substances to be tested.

Later in the process, development biomarkers can also be very useful. Usually the same as those identified during the discovery process, they are used in clinical trials to provide early information about the drug’s efficacy and safety, before any clinical parameter can be measured. Because they are able to provide information that is not accessible to conventional clinical monitoring, they can sometimes contribute to significantly accelerate the development process. In a nutshell, in order to measure the efficacy of a new drug, simple blood tests can now (in some cases) replace months or even years of clinical observation.

And finally, the commercial biomarkers. By “commercial” we mean biomarkers that have been officially recognized by the regulatory authorities as tools that bring useful information on a patient’s state and that can be used to make clinical decisions; diagnostic tools using these biomarkers can also be reimbursed by the healthcare system. This type of biomarker is not new. To mention two examples, glucose has been recognized as a biomarker of diabetes since the XIXth century (now it has been replaced by HbA1c), and PSA (Prostate Specific Antigen) since the 80’s for prostate cancer.

Although biomarkers have been used for a long time, the development of molecular biology, bioinformatics and innovative detection methods has hugely increased the possibilities, and a new type of tool has emerged: “molecular” diagnostics. The first emblematic examples of these new powerful techniques are the so-called “companion diagnostics”, which have been introduced in cancer (first with Herceptin, mentioned earlier) and more recently HIV, where the prescription of some expensive treatments has been conditioned by the patient responding to a specific genetic test. Other well-known examples are routine screening tests for infectious diseases (HIV) that have a very high degree of specificity and sensitivity.

Molecular diagnostics are the tools of modern medicine. They enable clinicians to identify early signs of diseases, to select the right treatment based on genetic profiles (companion diagnostics), to monitor treatments’ efficacy and to make much better informed decisions based on each patient’s particular profile and reaction to previous treatments. They also have an economic role, because they may lead in some cases to significant savings in treatment costs.

The road ahead: when will personalized medicine become common practice?
It seems, then that an ideal world is ahead where all diseases would be diagnosed before it is too late, would receive personalized treatments that would be cured immediately, without side-effects and relapses… There are, however, some barriers on the road.

Firstly, for healthcare manufacturers: the use of biomarkers may in some cases not accelerate, but slow down research and development: as genetic profiling of patients becomes possible, the temptation is high to demand that patients be divided into more groups, according to their genetic profile, which in turn increases the amount of tests to be performed and data to be analyzed, and may also slow down patient recruitment.

Secondly, and this is the biggest challenge, the regulatory and economic framework that should favor the development of molecular diagnostics is not in place yet. Molecular diagnostics is an emerging field, and healthcare is a highly regulated environment. For drugs in most countries today, the regulatory process that leads to the marketing authorization is well structured, as well as the “market access” process that leads to the reimbursement of the drug by healthcare systems. It is, however, not yet the case for molecular diagnostics. The first reason is that the field of molecular diagnostics is new; the second, more important reason is that the nature of what they bring, information, is something that healthcare professionals are not yet used to value.

Be it in Europe, in the United States or elsewhere, a new molecular diagnostic tool will always have to prove that the biomarker it is supposed to monitor has both clinical relevance AND economic value in the overall management of the patient. In contrast with drugs where clinical performance (vs. standard of care) is always the most important criteria, what payers will look for in a diagnostic tool is most often how much can be saved. The medical information brought by a molecular diagnostic tool can save or prolong lives, avoid pain, secure the patient, help a physician make the right decision: payers however, especially in Europe, are not prepared to pay for this information – yet. Introducing the principle of “value-based pricing” in future reimbursement negotiations is tomorrow’s main challenge for the diagnostic industry.

The time has not come where molecular diagnostics will be used systematically for every patient in every country, in prevention programs, before any treatment decision is taken, and after each treatment phase. It is also not yet entirely clear when and how payers will recognize the value of the information they bring.

However, there is little doubt that in the end, because the information they bring is so valuable to physicians – and eventually to payers as well – they will become the main tools of tomorrow’s medicine, personalized medicine.

- Posted from my iPad2

Location:Georgetown TX,United States

Sunday, November 6, 2011

The gene responsible for cystic fibrosis brings new treatments closer

Cystic Fibrosis Drugs on Horizon - WSJ.com

More than two decades after scientists identified the gene responsible for cystic fibrosis, drug makers are finally edging closer to new treatments—a long journey that underscores the challenges of translating genetic discoveries into actual drugs.

Vertex Pharmaceuticals Inc., Pfizer Inc. and PTC Therapeutics Inc. are among the companies working on drugs that aim to arrest the disease’s destructive march through the lungs and airways by targeting its cellular underpinnings. Furthest along is a pill from Vertex, which on Wednesday filed for regulatory approval of its drug Kalydeco. The drug is for only a small fraction of cystic fibrosis patients with a specific genetic mutation, but in 48 weeks of clinical testing, Kalydeco improved the lung function of patients by 17%, while cutting their risk of getting intermittent sicknesses by 55%.

“We really believe with these new drugs that we should be able to add decades to the lives of patients in a very short period of time,” said Robert Beall, chief executive of the Cystic Fibrosis Foundation, which has given or committed $315 million to companies for drug research.

The new wave of drugs in the pipeline could cost as much as $200,000 a year per patient, according to one Wall Street analyst, and sales for the category could peak at $5.5 billion world-wide despite a small market.

Cystic fibrosis is an inherited, life-threatening disease that clogs airways with thick mucus, inviting bacterial infections and progressively robbing patients of their ability to breathe. The condition affects some 30,000 patients in the U.S. and a total of 100,000 world-wide.

To date, treatment has been limited. Sufferers can take drugs that address symptoms, such as antibiotics to tackle the infections, and they typically wear a mechanical vest for several hours each day that vibrates to dislodge the mucus.

Aggressive use of treatments has raised median life spans dramatically, but patients still can’t expect to survive much past their 30s or 40s. Hence patients’ interest in treatments ever since researchers identified the responsible gene in 1989.

That it’s taken two decades for the first drug to near approval provides some “important lessons” on the need to speed the development of genetic advances into treatments so that what turn out to be the nonviable compounds can be weeded out earlier on, said Francis Collins, a co-discoverer of the cystic fibrosis gene who now heads the National Institutes of Health. “It shouldn’t have to take that long in the future.”

After discovery of the cystic fibrosis gene, it took several years for scientists to develop a hypothesis explaining how a defective gene results in the disease. The gene makes the channels that carry chloride in cells up to airways, where it’s needed for clearing mucus that builds up, some scientists believe. Mutations impede the flow of chloride, causing the mucus to accumulate and impeding the hair-like particles called cilia from beating back and forth to clear out the mucus.

Researchers spent years at first on gene therapy—aiming to replace the mutated gene with a healthy substitute. But it proved difficult to introduce a healthy gene in patients without their immune systems thwarting the effort. Eventually researchers turned to drugs that could correct for the cellular hitches caused by the mutations and enable chloride to get into airways.

At Vertex, it took all of 2003 to find a way to test promising compounds. Company scientists wanted to test drug prospects on the lung cells of cystic fibrosis patients, but the donated lungs were too contaminated with mucus. Vertex scientists had to use tweezers to extract the mucus, then isolated the cells for use in testing, said Fred Van Goor, who led the project.

Ten days after she was born, 2-year-old Gwendolynn Hughes was diagnosed with cystic fibrosis. Her mother Elisa shares what life is like for the little girl and her family. Plus, how new drugs are offering new hope for CF patients.

With the test in place, the researchers could quickly see through their microscopes the compound that became Kalydeco having an impact: fluid containing chloride was on the surface of the cells and cilia had resumed beating back and forth. “You could actually see the restoration of the cellular defect. That’s when the organization started to believe that we really [had] something here,” Dr. Van Goor said.

In Kalydeco’s pivotal trial, patients experienced improved breathing and fewer of the illnesses associated with cystic fibrosis. Patients, who are typically underweight, gained an average of seven pounds.

Since joining the trial in 2009, cystic fibrosis patient Capri Faulk has added 24 pounds to her 49-pound frame, and can play outside with her brother and sister without getting exhausted. Her mother, Nicole Faulk, of Oklahoma City, Okla., says she now talks with the 8-year-old about one day having a family.

“I had hopes and dreams for her, and I was scared they would be robbed from her and from me” until the new drug came along, Ms. Faulk said.

The pill has limitations. It targets a mutation, called G551d, affecting just 4% of patients. Nor has the drug been shown to reverse the effects of the disease. So far, results haven’t been as strong for other compounds from Vertex and others that are further behind in development.

“It says we’re not quite there yet, but it suggests maybe we’re not too far off,” said Michael Welsh, a cystic fibrosis researcher at the University of Iowa and Howard Hughes Medical Institute.

PTC Therapeutics, a 13-year-old biotech that has received $100 million from Genzyme, is conducting a phase III trial of its compound, ataluren, in cystic fibrosis patients with a so-called nonsense mutation. Novartis AG has a compound in phase 1 clinical trials, a spokeswoman said. And Pfizer has begun screening for potential cystic fibrosis drugs, said Ed Mascioli, head of the drug giant’s orphan and genetic diseases unit.

- Posted from my iPad2

Location:Georgetown TX,United States

Saturday, November 5, 2011

Breakthrough in treatment of heart disease

Medical breakthrough for heart repair

In a medical breakthrough a man’s heart was saved through the use of a breakthrough medical technology. The man, John Christy, is the first person in the United States to undergo this procedure. The new procedure utilizes stem cells in helping repair the arteries all throughout a person’s body.
Christy was suffering from coronary artery disease at a very advanced stage. What was done to him was to insert his own specific stem cells into his body during a CABG surgery. The stem cells are used to grow new blood vessels in the heart. This is a revolutionary procedure that can save millions of lives when it is further developed and become widely available.

- Posted from my iPad2

Location:Georgetown TX,United States

Taking Your Blood Pressure Drugs at Bedtime May Cut Heart Risk

Blood Pressure Drugs at Bedtime May Cut Heart Risk

Study Suggests Benefits to Taking Blood Pressure Drugs Before Going to Sleep

By Kathleen Doheny
WebMD Health News
Reviewed by Laura J. Martin, MD

Oct. 27, 2011 — Taking at least one blood pressure medicine at bedtime cuts the risk of heart problems, according to new research.

The study also shows that participants taking at least one blood pressure pill at bedtime had lower blood pressure while asleep.

Earlier studies have suggested that bedtime dosing of at least one blood pressure medication may help control blood pressure. But the new study is believed to be the first to look at whether the timing makes a difference in terms of heart attacks, strokes, and death.

Ramon C. Hermida, PhD, director of the bioengineering and chronobiology labs at the University of Vigo in Spain, studied 661 people with both high blood pressure and chronic kidney disease.

“Taking blood-pressure-lowering medication at bedtime, compared to [taking] all medication upon awakening, not only improved blood pressure control, but significantly reduced the risk of cardiovascular events,” Hermida says in a news release.

The research appears in the Journal of the American Society of Nephrology.

Timing of Blood Pressure Medicines

Hermida’s team asked half of the men and women to take all their blood pressure medicine when they got up in the morning. On average, each person took two medicines. Many took more than three.

The researchers asked the other half to take at least one of their blood pressure medicines at bedtime.

They measured blood pressure by using 48-hour ambulatory monitoring at the start of the study — not just a single daytime measurement used in most earlier studies. They also measured blood pressure three months after any treatment changes or, at the least, every year.

The researchers followed the men and women for about five and a half years. They looked to see which heart problems developed. They tracked death from any cause and from heart disease or stroke.They also tracked heart attack, angina, heart failure, and other problems.

More than half of those with chronic kidney disease also have high blood pressure, according to the National Kidney Foundation. High blood pressure increases the risk of the kidney disease worsening. Overall, one in three U.S. adults has high blood pressure, according to the researchers.

Bedtime Dosing of Blood Pressure Medicine

Those who took at least one blood pressure medicine at bedtime had lower nighttime blood pressure while asleep. They were also more likely to have overall good control of their blood pressure.

The bedtime group was one-third as likely to have heart and blood vessel problems such as heart attack, stroke, or heart failure, the researchers found.

Improved overnight blood pressure with bedtime dosing had a real benefit. Each 5-point drop in sleep-time blood pressure was linked with a 14% reduction in risk for heart attack, stroke, or heart failure.

“Cardiovascular event rates in patients with hypertension can be reduced by more than 50% with a zero-cost strategy of administering blood pressure-lowering medications at bedtime rather than in the morning,” Hermida says in a news release.

- Posted from my iPad2

Location:Georgetown TX,United States

Thursday, November 3, 2011

How does cancer know its cancer? The answer leads to a new approach to treatment.

TED is a great site. The site says TED Ideas Worth Spreading. This video is a great example. It is titled How Does Cancer Know It Cancer? It looks at the cure of Cancer in a new light.


- Posted from my iPad2

Location:Georgetown TX,United States

Vampire like bacteria may become antibiotic

Vampire-like Predatory Bacteria Could Become A Living Antibiotic
| 80beats | Discover Magazine blogs.discovermagazine.com | by Douglas Main

The bacterium Micavibrio aeruginosavorus (yellow), leeching
on a Pseudomonas aeruginosa bacterium (purple).
What’s the news: If bacteria had blood, the predatory microbe Micavibrio aeruginosavorus would essentially be a vampire: it subsists by hunting down other bugs, attaching to them, and sucking their life out. For the first time, researchers have sequenced the genome of this strange microorganism, which was first identified decades ago in sewage water. The sequence will help better understand the unique bacterium, which has potential to be used as a “living antibiotic” due to its ability to attack drug-resistant biofilms and its apparent fondness for dining on pathogens.
Anatomy of a Vampire:
The bacterium has an interesting multi-stage life history. During its migratory phase it sprouts a single flagellum and goes hunting for prey. Once it find a delectable morsel of bacterium, it attacks and irreversibly attaches to the surface, and sucks out all of the good stuff: carbohydrates, amino acids, proteins, DNA, etc.
Sated, the cell divides in two via binary fission, and the now-depleted host is left for dead.
Hungry for Pathogens:
M. aeruginosavorus cannot be grown by itself; it must be cultured along with another bacteria to feed upon. A 2006 study found that it only grew upon three bacterial species, all of which can cause pneumonia-like disease in humans. A more recent study showed that it can prey upon a wider variety of microbes, most of them potentially pathogenic, like E. coli.
These studies also found that M. aeruginosavorus has a knack for disrupting biofilms, the dense collection of bacteria that cause harmful plagues on teeth and medical implants alike, and can be up to 1,000 more resistant to antibiotics than free-swimming bugs.
The bacteria can also swim through viscous fluids like mucous and kills Pseudomonas aeruginosa, the bacterium that can colonize lungs of cystic fibrosis patients and form a glue-like film.
These qualities have caught the eye of researchers who think it could be used as a living antibiotic to treat biofilms and various types of drug-resistant bacteria, which are a growing problem in medicine. Sequencing the organism’s genome is an important step in understanding its biochemistry and how it preys on other microbes.
Clues From the Vampire Code:
The new study found that each phase of life involves the use (or expression) of different sets of genes. The migratory/hunting phase involves many segments that code for flagellum formation and genes involved in quorum sensing. The attachment phase involves a wide variety of secreted chemicals and enzymes that facilitate the flow of materials from the host.
Micavibrio aeruginosavorus possesses no genes for amino acid transporters, a rather rare trait only seen in a few other bacterial species that depend heavily upon their host to help them shuttle these vital protein building-blocks. This absence helps explain the bacterium’s dependence on a narrow range of prey, from which it directly steals amino acids. Although it remains unclear exactly how the microbe attaches to and infiltrates other cells.
The Future Holds:
The range of microbes upon which Micavibrio aeruginosavorus can survive is expanding; after being kept in laboratory conditions for years it has apparently evolved a more diverse diet. If this expansion continues, that could be a real problem for its use as an antibiotic; it could begin to eat beneficial gut bacteria, for example.
Researchers claim it is harmless to friendly gut microbes, but it hasn’t been tested on all the varieties of bacteria present in humans.
Several important steps must be taken before testing in people, like learning more about what traits makes another bacteria tasty to Micavibrio aeruginosavorus. Researchers speculate the bacterium may need to be genetically altered in order to go after specific pathogens, or to reduce the risk of it causing unforeseen complications.
Reference: Zhang Wang, Daniel E Kadouri, Martin Wu. Genomic insights into an obligate epibiotic bacterial predator: Micavibrio aeruginosavorus ARL-13. BMC Genomics, 2011; 12 (1): 453 DOI: 10.1186/1471-2164-12-453
Image credit: University of Virginia
545 132 Share 1
November 2nd, 2011 2:07 PM Tags: antibiotic resistance, antibiotics, bacteria, genome sequence, genomics, Pseudomonas aeruginosa
by Douglas Main in Environment, Health & Medicine, Living World, Top Posts | 7 comments | RSS feed | Trackback >

- Posted from my iPad2

Location:Georgetown, TX,United States